
State-of-art in Storage Model using Encryption
Technique for privacy preserving in Cloud

Computing

V.K.Saxena1 and Shashank Pushkar2

1 School of Engineering & Technology, Vikram University, Ujjain, M.P., India
2 Birla Institute of Technology, Mesra, Ranchi, Jharkhand, India

Abstract: Now-a-days cloud computing is showing consistent
growth in the field of computing. Users can utilize these
services on pay-per-use basis. When data is exchanged in
cloud, there exists the problem of disclosure of privacy. The
idea is to build privacy preserving storage model where data
sharing services can update and control the access and limit
the usage of their shared data. Preserving privacy is an
important issue for cloud computing and it needs to be
considered at every phase of design. This paper proposes a
metadata based data segregation and storage methodology
along with an encryption technique to provide additional
security. This would serve as a helping note in the progress of
strengthening the privacy preserving approaches in cloud
computing.

Keywords: Cloud computing, data privacy, data security, data
storage

I. INTRODUCTION
In large data centre, cloud computing moves the application
software and databases, where the management of data and
services are not reliable. This unique attribute poses many
security challenges [15]. To realize the tremendous
potential, business must address the privacy questions
raised by the new computing model [4].
The metadata based storage model is based on the
information which is valuable only as long as the fragments
of the information are related to each other. For example,
credit card information without its corresponding
information like card holder name, Card Verification Value
(CVV) and validity date is invaluable. The information
becomes valuable only when these fragments of
information are mapped. The mapped information about
elements is required only for authenticated users and
owners of the relevant information. In recent times, a well
known instance of intrusion of user information is recorded
by Sony PS Network [8].
In this situation, there is no necessity that data should be
stored in a mapped manner, but the mapping is needed at
the point of usage. Juels et.al., [10] described a formal
“Proof of Retrievability” (POR) model for ensuring the
remote data integrity. Their scheme combines spot-
checking and error-correcting code to ensure both
possession and retrievability of files on archive service
systems. The time of usage of the information is apparently
very less in comparison to the time that data is present at
the storage location. Thus two types of security concerns
arise. One concern is during data usage, i.e. during

transmission and secondly, static phase of the data, i.e.
during residing at storage centers. With respect to the data
security during transmission in the cloud, Subashini
S.,et.al.,[13] proposed a layered framework to deliver
security as a service in cloud environment. This framework
consists of a security service which provides a multi-tier
security based on the need of the transaction. The
framework provides dynamic security to users based on
their security requirements, thus enabling localized level of
security and thereby reducing the cost of security for
applications requiring less security and providing robust
security to applications. Hose et.al.[9] proposes a model to
fragment data horizontally or vertically with relation to the
tuples so that data can be accessed or updated in an
optimized manner.
Subashini S., et.al.[14], proposed the model in which the
data has to be segregated and further fragmented into
smaller units until each fragment does not have any value
individually. In addition to the fragmentation, we propose
an encryption technique which provides additional security.
This encryption allows only to data that is fragmented as
‘sensitive’ by the data migration environment.
Although existing privacy preserving query processing
approaches, such as [1], [2], [3], [7], [11], [12], [16], can
evaluate a query on randomized data, none of them can
handle a series of queries, where some queries need other
queries results as input. In [5], a symmetric searchable
encryption scheme and an asymmetric searchable
encryption scheme are proposed to store user’s data in a
third party. This paper proposes a secure query plan
executor which can execute query plans without additional
information about the data of data sharing services.
The rest of the paper is organized as follows: Section II
presents system architecture, section III analyzes metadata
based storage model, section IV provides the methodology,
section V provides privacy preserving query plan with data
storage, Section VI analyzes our approach for privacy
preservation, section VII analyzes the stirring example for
data privacy, and section VIII concludes the paper.

II. SYSTEM ARCHITECTURE

Now-a-days in existing data integration systems, it is
understood that there is a central and trusted authority
collecting all data from data sharing services and computing
integration results for users based on the collected data. We
assume that our data storage will correctly construct the

V.K.Saxena et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 5 (1) , 2014, 64-69

www.ijcsit.com 64

query plans for user’s requirements, decompose query
plans, discover and fetch data from distributed data sharing
services, amalgamate all data together, and, finally, return
the final results to users. Further, we assume that our data
storage is granted the access to the shared data by all data
sharing services, and all shared data is well protected [17].
Our data storage consists of two components: the query
plan wrapper and the query plan executor. The query plan
wrapper is responsible for analyzing integration
requirements and constructing query plans for the query
plan executor. Since the wrapper development and
optimization have been extensively studied [6], [18]. we
assume that the query plan wrapper can select data sharing
services and construct a query plan graph (Fig.3) from
user’s integration requirements. The query plan executor is
responsible for executing query plans to fetch data from
data sharing services and producing the final results.

III. DATA STORAGE MODEL BASED ON METADATA
This paper describes the model which only deals with the
data security at the storage centers. This in turn has two
concerns: one issue is about the actual physical unit where
the data is stored and the other one is the intrusion into the
information. Our model is mainly focused in providing
security in avoiding intrusion.
Here Data has to be segregated into Public Data Segment
(PDS) and Sensitive Data Segment (SDS). The SDS has to
be further fragmented into smaller units until each fragment
does not have any value individually. Here the
fragmentation need not be of multiple levels. Instead, effort
has to be put in to identify the key element that makes the
data sensitive and should be fragmented separately. Data
fragmentation is shown in figure 1.

 Fig.1 Data Fragmentation

In this process, the value of the information is actually
destroyed, but as and when fragmentation is done, the
mapping data required to re-assemble the information
should also be generated parallel. This can be done for
database that is being designed from scratch. But, this is not
effective for enterprises who want to move their existing
data to the cloud. As a measure of migration of data from
existing environment to cloud, the migration should be
done appropriately. This can be made feasible by this
model. For achieving this, we need a Data Migration
Environment (DME) which does this job. The input to

DME should be the existing schema of the database and
additional information about the sensitive part of the
schema should be given as Metadata to the DME. Then the
DME can fragment the data into pieces based on the level
of security needed. It will also prepare a mapping table to
re-assemble the data.

IV. THE METHODOLOGY

We can consider an example related with a customer
database in a bank consisting of customer’s information
along with his credit card information. The schema for
storing such information will be in the form of tables. Some
tables containing personal information of the user and some
tables containing information regarding to credit cards and
will be mapped using their ids. This particular information
can be stored in a bankDB database as follows:

Customertable (CustomerId, CustomerName,
CustomerAddress, CustomerPhone, CustomerDOB)
Membershiptable (CustomerId, Password,
PasswordQuestion, PasswordAnswer)
Creditcardtable (CardId, CreditcardNo, CardExpiryDate,
CVVNo)
Customer_Creditcardtable containing (CustomerId, CardId
)
Where the primary keys are underlined and foreign key are
bold.

If an intruder wants to access this information, he can
exploit particular database because all related information
are stored at the same location. In this example, the
Customer table contains data which is not of much
importance. The Membership table taken individually does
not have any value but along with the Customer table data,
it is vital information for an intruder. The Credit card table
is a sensitive data with high value because though there is
no mapping done with the Customer table, for the intruder,
it is a high potential target. For example, an online
transaction can be done successfully with this data alone.
The information of Customer table and
Customer_Creditcard table taken together indicates heavy
losses for the bank. Usually, the entire data is stored in a
single database and on the same hardware resource.

This model enforces that the related data should be stored at
different locations and should be mapped runtime either
during update or query. Paper considers this entire model,
which is to be migrated to our proposed model through the
DME. The user has to supply the schema information
together with its metadata of these tables to the DME. Let
us consider only three categories of metadata for this
example. The data which is having low value is considered
as ‘Normal’. The data which is having high value is
considered as ‘Critical’ and the data which has value when
mapped with other data are considered as sensitive. The
data which maps ‘Sensitive’ or ‘Critical’ data to ‘Normal’
data is also considered ‘Sensitive’. The metadata for our
example are shown in Table 1.

V.K.Saxena et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 5 (1) , 2014, 64-69

www.ijcsit.com 65

 Table 1: Metadata information

Table Metadata
Customer Normal
Membership Sensitive
Credited Critical
Customer_Creditcard Sensitive

The work of DME starts now. It has to fragment this data.
For this fragmentation the DME should be able to be
configured or customized with respect to the level of
security required. In our example, DME provide medium
level security and it should fragment only data which are of
‘Critical’ criteria. For high level security, it should fragment
data present in both ‘Critical’ and ‘Sensitive’ criteria. The
DME is not aware of the actual data residing within these
tables. Hence along with the metadata of the tables, the
primary key name should be provided in addition to it. This
is easily available with the schema information of the
database tables. Now DME configured the different levels
of security needed and their corresponding metadata. For
medium security in our database, the DME can fragment
only the data that is ‘Critical’. In our example, we have one
‘Critical’ data set. The corresponding table is Credit card
table and the primary key of this table is CreditcardId. In
the first step of DME it fragments this table as below:

DME_Creditcardtable(SensitiveId, CreditcardNo,
CardExpiryDate)
DME_Creditcard_Senstivetable (SensitiveId, CVVNo)
DME_Creditcard_Mappertable (CreditcardId, SensitiveId)

Here in above two tables, primary and foreign keys are
created by DME.
The data of the above three tables will fall under the
‘Sensitive’ category of metadata. In the current situation
Table 2 shows the metadata.
 Table 2: Metadata information after fragmentation

Table Metadata
Customer Normal
Membership Sensitive
DME_Credited Sensitive_DME
Customer_Creditcard Sensitive
DME_Creditcard_Sensitive Sensitive_DME
DME_Creditcard_Mapper Sensitive_DME

The DME segregates the schema by separating out the data
modified by DME, ‘Originally Sensitive’ data and ‘Normal’
data as shown in Table 3 after fragmentation is completed.
 Table 3: Segregated schema

Normal Originally sensitive Sensitive DME

Customer Membership DME_Creditcard

 Customer_Creditcard DME_Creditcard_Sensitive

 DME_Creditcard_Mapper

The ‘Sensitive DME’ data is then split into Actual Data
(AD) and Mapper Data (MD):
Sensitive DME
 Actual Data (DME_Creditcard,

DME_Creditcard_Sensitive)
 Mapper Data (DME_Creditcard_Mapper)

Here the DME then moves the ‘Normal’ data to one
database and ‘Originally Sensitive’ data to another
database, and AD of ‘Sensitive DME’ data to another
database at different location and MD of ‘Sensitive DME’
to the database with ‘Normal’ data. If DME creates its own
table with respect to the AD, then this table will be the most
sensitive data and will be stored in a different location.
Here different location means the different server at the
same geographical location or at different geographical
location. Now one more mapping is required for mapping
the original table with the fragmented data set. This
fragmented data set can be stored in a separate table. Now
the fields of our database are looks like the following:

Server 1
 bankDB

Customertable(CustomerId, CustomerName,
CustomerAddress, CustomerPhone, CustomerDOB)

 bankDB_DME
Membershiptable(CustomerId, Password,
PasswordQuestion, PasswordAnswer)
Customer_Creditcardtable (CustomerId, CardId)
DME_Creditcard_Mappertable (CreditcardId,
SensitiveId)
DME_Mappertable (OriginalTableName, NewTable
Name)
Where sensitiveId is created by DME

Server 2
 DME_Creditcardtable(SensitiveId, CreditcardNo,

CardExpiryDate)
Where sensitiveId is created by DME

Server 3
 DME_Creditcard_Senstivetable (SensitiveId, CVVNo)

Where sensitiveId primary and foreign key created by
DME

After this separation of the fields, the DME_Mapper table is
shown in Table 4.

Here each database contains data which does not have value
in itself. The entire mapping is done only during runtime
and the value is built up temporarily during access and
update and later its value is destroyed. During the static
phase of the life cycle of the data, when an intruder wants to
get access to the data, he can’t use the data to exploit the
information by any way. The integrity between the original
schema and the new schema can be taken care by deploying
a database runtime migration environment which will
deploy all the logics required for the runtime generation of
schema.

Table 4: DME_MAPPER Table
OriginalTableName NewTableName

Creditcard DME_Creditcard
Creditcard DME_Creditcard_Sensitive
Creditcard DME_Creditcard_Mapper

V.K.Saxena et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 5 (1) , 2014, 64-69

www.ijcsit.com 66

V. PRIVACY PRESERVING QUERY PLAN WITH DATA

STORAGE
In proposed system, as in the Fig. 2, data storage will
collect only the data required for user’s requests. To
formulate the privacy preserving data integration across
data sharing services in the cloud, it is needed to define the
query plan [17]:

 Fig.2 Our privacy preserving repository for data integration
 across data sharing services

Definition of Query Plan: A query plan P is a partially
ordered set of queries (p1; p2; …..; pm) with two properties:

1. Each pi can be evaluated only after all of its
precedent queries have been evaluated.

2. The data from the data sharing services can be
directly used by each pi or the precedent queries’
outputs can be used as inputs.

The output of pi with no succeeding queries is the final
result of P, and all other queries’ outputs are intermediate
results. From the above definition, it indicates that a query
plan P has a much richer structure than a single query or a
set of independent queries. First, there is a partial order
relation among queries in P. Second, only the outputs of
queries in P without successive queries constitute the final
result and all other intermediate results should be protected.
Consequently, we have the following definition:

Definition of Privacy Preserving Data storage: For a
query plan P = (p1; p2; ….; pm) and a data storage STOR,
where STOR is a privacy preserving data storage for data
integration, if STOR executes P in a privacy preserving
manner as follows:

 STOR has only P’s final result encrypted with
user’s public key and has no information on P’s
intermediate results

 STOR cannot use the data shared for P to evaluate
any other queries.

VI. PROPOSED APPROACH FOR PRIVACY PRESERVATION
Then objective of the paper is to build up data storage to
facilitate the data integration and sharing across cloud along
with preservation of data confidentiality. We present the
process of the data integration via our privacy preserving
data storage STOR. The process is as follows:
Step 1: The user sends his/her public key Pk and the

requirements about data integration to our
repository STOR.

Step 2: The query plan wrapper of STOR analyzes the

user’s integration requirements and converts them
to a query plan graph G, and then decomposes G to
a set of sub-graphs (G1;G2; ….;Gm) and sends the
sub-graphs to the query plan executor. Every sub
graph Gi represents the context of one data sharing
service for conducting context-aware data sharing.

Step 3: For every Gi, the query plan executor looks for the

corresponding data sharing service Si and sends Gi
to Si, which prepares the data using the Context-
Aware Data Sharing concept and returns all
randomized data to the query plan executor.

Step 4: The query plan executor integrates all returned

data to execute the G and outputs the results
FResult of user’s request, which is encrypted with
the user’s public key Pk.

Step 5: STOR sends Final Result to the user who then

decrypts it with his/her secret key Sk.

This proposed scheme is secure under the standard security
model. This scheme is also able to support user
accountability. Whether we are assembling, managing or
developing on a cloud computing platform, we need a cloud
compatible database. It also supports other cloud objectives
such as lower costs for hardware, maintenance, tuning and
support.

VII. AN STIRRING EXAMPLE FOR DATA PRIVACY
Here, we consider an example of customer database in a
bank which include customer, membership and credit card
information and a location database. We assume that
database C1 (CNAME, CNO) storing customer’s name and
corresponding credit card no, database C2 (MNO, CNO)
storing the corresponding membership no. and credit card
no., database C3 (MNO, CPLACE, PID) storing customer’s
credit card details with password-id and a location database
C4 (CNAME,CLOC) storing the location of customers. The

Data Storage

Query Plan

Wrapper

Query Plan Executor

Client Application

Data Sharing

Services S1

Data Sharing

Services S2

Data Sharing

Services Sn

1 Submit

request
5 Decrypt

final result

4 Integrate

shared

data
2 Decompose

Query Plan

3 Context aware
 data sharing

V.K.Saxena et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 5 (1) , 2014, 64-69

www.ijcsit.com 67

database schema and data are shown in Table 5. This
example is explained in terms of four SQL queries shown in
Table 6, where Q1, Q2, and Q3, generate three temporary
tables, Tmp1, Tmp2, and Tmp3 respectively, and the last
query, Q4 outputs the final results.

Table 5 Database in the example (C1, C2, C3, and C4)

Customer table
C1(CNAME, CNO)

Membership table
C2(MNO,CNO)

MNO CNO
MNO1 P1
MNO2 P1
MNO3 P2
MNO4 P3

Credit card table

C3(MNO,CPLACE,PID)
MNO CPLACE PID
MNO1 P1 ID1
MNO2 P1 ID2
MNO3 P2 ID3
MNO4 P3 ID4

Location table

C4(CNAME, CLOC)
CNAME CLOC

Mukto IND
Mukto POL
Parth USA
Abhi BRZ

 Table 6 Queries required by the example

Q1Tmp1
SELECT C1.CNO
FROM C1
WHERE C1.CNAME=
“Mukto”

Q2Tmp2
SELECT C2.MNO
FROM Tmp1, C2
WHERE Tmp1.CNO= “C2.CNO”

Q3Tmp3
SELECT C4.CLOC
FROM C4
WHERE C4.CNAME=
“Mukto”

Q4
SELECT C3.PID
FROM Tmp2, Tmp3, C3
WHERE C3.MNO= Tmp2.MNO
AND C3.CPLACE=Tmp3.CLOC

All the queries are executed by Table 5. However, our data
storage is allowed to collect only the needed information.
On the other hand our data storage will randomize Q1’s
result and make the randomized result still usable for Q2
because the data storage needs some extra information to
execute queries, such as Q1’s result, which is needed by Q2
as an input.

Here, in this example, to protect Q1’s result i.e. {P1; P2}
without disabling Q2, {P1; P2} is replaced by
{H(P1);H(P2)}, where H is a hash function. Because the
hashed patterns will usually remain unique, the data storage
can evaluate Q2 by comparing H(Tmp1;CNO) and
H(T2;CNO). This simple hash solution can avoid the need
for our data storage to know Q1’s results, but still keep the
mapping relation between names and customer’s CNOs.
Since H(P3) does not appear in the Q1’s hashed result
{H(P1);H(P2)}, our data storage can find that the customer
with CNO4 is not having name Mukto. To protect the
privacy of such information, the concept of Context-Aware
Data Sharing is used to randomize Q1’s result. The context
awareness implies that when a bank shares its database C1
with our data storage, it should know that its customer
number (CNO) data will be used to match the customer
number data from C2. While the simple hash solution only
randomizes the items in Q1’s result (i.e., P1; P2). Our
Context-aware data sharing concept randomizes all CNOs
in C1, but ensures that only P1 and P2 can be used to
evaluate Q2. Hence, the mapping between names and
CNOs are well protected. In the context of the above
example we illustrate how our data storage is being used for
developing of various credit cards at different locations and
how the data cannot disclose any additional information
about the data of databases C1, C2, C3, and C4.

Fig.3 The Query Plan graph of example

VIII. CONCLUSION
The paper presented a privacy preserving data storage to
integrate data from various data sharing services. In contrast
to existing data sharing techniques, our data storage only
collects the minimum amount of information from data
sharing services based on user’s integration requests, and
data sharing services can restrict our data storage to use
their shared information only for user’s integration requests.
Metadata based model will take some quantifiable effort to
be implemented in real time, it provides necessary solution
for an environment like cloud computing. This paper is
extended the outcome of Metadata based model. After
fragmentation in this model, by applying an encryption
technique, the privacy of the data can be preserved more
efficiently.

REFERENCES
[1] Agrawal, R., Evfimievski, A.V., and Srikant, R., Information

Sharing across Private Databases, Proc. ACM SIGMOD,
International Conf. Management of Data, SIGMOD’03, pp.86-97,
2003.

CNAME CNO
Mukto P1
Mukto P2
Parth P3
Abhi P4

S (=, “Mukto”, CNAME)

S (=, CNO, CNO) S (=, MNO, MNO) S (=, RESULT) t

S (=, “Mukto”,

S (=, CLOC,CPLACE)

V.K.Saxena et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 5 (1) , 2014, 64-69

www.ijcsit.com 68

[2] Agrawal, R., Kiernan, J., Srikant, R., and Xu, Y., Order-Preserving
Encryption for Numeric Data, Proc. ACM International Conf.
Management of Data, SIGMOD’04, pp.563-574, 2004.

[3] Bellare, M., Boldyreva, A., and O’Neill, A., Deterministic and
Efficiently Searchable Encryption, Advances in Cryptology,
CRYPTO’07, pp.535-552, 2007.

[4] BNA, Privacy and Security Law Report, The Bureau of National
Affairs Inc., 2009.

[5] Boneh, D., Sahai, A., and Waters, B., Functional Encryption:
Definitions and Challenges, In proc.of TCC’2011, LNCS 6597,
pp.253-273, 2011.

[6] Fischer, K.P., Bleimann, U., Fuhrmann, W., and Furnell, S.M.,
Security Policy Enforcement in BPEL-Defined Collaborative
Business Processes, Proc. 23rd International Conf. Data Eng.
Workshop, pp.685-694, 2007.

[7] Ge, T., and Zdonik, S.B., Answering Aggregation Queries in a
Secure System Model, Proc. 33rd International Conf. Very Large
Data Bases, VLDB’07, pp.519-530, 2007.

[8] Goodin, D., User data stolen in Sony PlayStation Network hack
attack, Ars Technica, 2011.

[9] Hose, K. and Schenkel, R., Distributed Database Systems
Fragmentation and Allocation, Distributed Database Systems, 2010.

[10] Juels, A. and Kaliski, B.S., Pors: Proofs of retrievability for large
files, Proceedings of the 14th ACM Conference on Computer and
Communications Security, ACM Press, USA, pp.584-597, Oct. 28-
31, 2007.

[11] Lebanon, G., Scannapieco, M., Fouad, M.R., and Bertino, E.,
Beyond k-Anonymity: A Decision Theoretic Framework for
Assessing Privacy Risk, Transactions on Data Privacy Journal, 2:3,
pp.153-183, 2009.

[12] Lindell, Y., and Pinkas, B., Secure Multiparty Computation for
Privacy-Preserving Data Mining, Journal of Privacy and
Confidentiality, 1(1), pp.59-98, 2009.

[13] Subashini, S. and Kavitha, V., A survey on security issues in service
delivery models of cloud computing, J. Netw. Comput. Applications,
34: pp.1-11, 2011.

[14] Subashini, S. and Kavitha, V., A metadata based storage model for
securing data in cloud environment, American Journal of Applied
Sciences, 9(9), pp.1407-1414, 2012.

[15] Wang, C., Wang, Q., Ren, K., and Lou, W., Ensuring data storage
security in cloud computing, Proceedings of the 17th International
Workshop on Quality of Service, Jul. 13-15, IEEE Xplore Press,
Charleston. SC, pp.1-9, 2009.

[16] Xiong, L., Chitti, S., and Liu, L., Preserving Data Privacy for
Outsourcing Data Aggregation Services, ACM Trans. Internet
Technology, vol. 7. No. 3, pp. 17-45, 2007.

[17] Yau, S.S., and Yin, Y., A Privacy Preserving Repository for Data
Integration across Data Sharing Services, IEEE Transactions on
Services Computing, Vol 1, No.3. July-September, 2008.

[18] Yu, B., Li, G., Sollins, K.R., and Tung, A.K.H., Effective Keyword-
Based Selection of Relational Databases, Proc. ACM International
Conf. Management of Data, SIGMOD’07, pp.139-150, 2007.

V.K.Saxena et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 5 (1) , 2014, 64-69

www.ijcsit.com 69

